B. Math. III - Mid-Term Examination

Introduction to Differential Geometry

September 23, 2008

- 1. Let S be an open subset of \mathbb{R}^n , and let $f: S \to \mathbb{R}$ be a real-valued function with finite partial derivatives $D_1 f, \ldots, D_n f$ on S. If f has a local maximum or a local minimum at a point c in S, then prove that $D_k f(c) = 0$ for each k.
- 2. Let γ be a curve in \mathbb{R}^n and let $\widetilde{\gamma}$ be its reparametrisation with the reparametrisation map ϕ (hence $\widetilde{\gamma}(\widetilde{t}) = \gamma(\phi(\widetilde{t}))$). Let s and \widetilde{s} be arc lengths of γ and $\widetilde{\gamma}$ starting at a point $P = \gamma(t_0) = \widetilde{\gamma}(\widetilde{t}_0)$. Prove that $\widetilde{s} = \pm s$, with the sign being determined by the monotonicity of ϕ .
- 3. Define the vector product of two vectors in \mathbb{R}^3 . Prove that the norm of the vector product of the two vectors u and v is the area of the parallelogram generated by them.
- **4.** Let γ be a unit-speed plane curve with unit signed normal vector n_s and signed curvature κ_s . Let λ be a constant. Define the parallel curve γ^{λ} of γ by:

 $\gamma^{\lambda}(t) = \gamma(t) + \lambda n_s(t).$

Show that γ^{λ} is regular if $|\lambda \kappa_s(t)| < 1$ for all values of t. Compute the signed curvature of γ^{λ} .

5. Show that the ellipse

$$\gamma(t) = (a\cos(t), b\sin(t)),$$

where a and b are positive constants, is a simple closed curve and compute the area of its interior.

6. Let γ be a unit speed curve in \mathbb{R}^3 and σ be the ruled surface

$$\sigma(u, v) = \gamma(u) + v\delta(u),$$

where $\delta(u)$ is a unit vector for all u. Prove that σ is conformal (patch) if and only if δ is a constant function of u and γ is a curve in a plane that is orthogonal to δ .